

IKTS

SO268/3*: ON-BOARD SYSTEMATIC POLYMER WEATHERING IN MESOCOSMS Annegret Benke¹, Kathrin Oelschlägel², Markus Schneider¹, Annegret Potthoff¹

¹Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany; ²Topas GmbH, Dresden, Germany

INTRODUCTION

- Transit SO268/3 of the research vessel SONNE from Vancouver, Canada to Singapore between May 30 and July 5, 2019
- Project MICRO-FATE Characterizing the fate and effects of microplastic particles between hotspots and remote regions in the Pacific Ocean
- Construction of mesocosms on the research vessel for natural weathering of polymers under controlled conditions (monitoring of UVB light and seawater properties)
- Analysis of the change in chemical and physical surface properties of polymers during the weathering period

NATURAL WEATHERING UNDER CONTROLLED CONDITIONS

Samples

Figure 1: Samples of different polymers (Low density polyethylene (LDPE), Polystyrene (PS), and Polyethylene terephthalate (PET)) were used as sheets (A), granulates (B), and bottle fragments (consumer product, C).

- Polymers: Low density polyethylene (LDPE), Polystyrene (PS), Polyethylene terephthalate (PET)
- Sampling after different weathering times (up to 28 days) \rightarrow progress

Mesocosms

Figure 2: View of one of the mesocosms installed on board the ship (left) and position of the samples at different water depths: Sheets and PET bottle fragments in the foreground, granules in nets in the background (right).

Imitation of different solar irradiances:

- UV up \rightarrow directly under water surface
- UV down \rightarrow at approx. 0.3 m water depth
- Dark up und dark down \rightarrow without UV light

2019-06-02

Figure 3: Monitoring UVB irradiation (spectral range of 280–315 nm) in sample positions. Irradiance fluctuated a lot due to position of the sun, attenuation by clouds and dissolved organic substances in the seawater, rolling of the ship. Average values are approx. 400 mW/m², peak values up to 1970 mW/m².

WEATHERING ANALYSIS METHODS

- Contact angle measurement \rightarrow assessing wettability with water

- For granules: density analysis by floating tests \rightarrow biofilm on the surface?

ACKNOWLEDGEMENT

pН

(MICRO-FATE, grant 03G0268TB)

www.ikts.fraunhofer.de

Figure 7: Temporal development of the contact angles of sheet samples weathered under controlled natural conditions in two mesocosms either with (UV light) or without (dark) light irradiation on the Pacific Ocean.

FTIR spectroscopy – chemical surface changes

Figure 8: Carbonyl and hydroxyl region from FTIR spectra of Pacific weathered PET samples in comparison with a not weathered sample

Scanning electron microscopy – biofilm growth

Figure 9: SEM images of PS sheets with growing biofilm over time during weathering in the mesocosm.

Summary

- Various methods were used to analyze changes in chemical and physical surface properties
- Water contact angle decreases with weathering time
 - Wetting increases for all samples
 - Contact angle depends on biofilm growth, on UV light irradiation, and on
 - polymer material: complete wettability for PS for UV position, LDPE wets worst • Cleaned samples without biofilm: eco-corona layer influences the contact angle
- (cannot be completely removed with our cleaning method)
- None or only minimal chemical changes on the surface detectable