Rare earth element cycling in oxic pore waters from the Northeast Atlantic (MSM96): benthic fluxes and implications for the use of Nd isotopes as a past water mass proxy

ONSTRUCTOR UNIVERSITY GEOMAR UH **Jniversität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG**

S. Paul¹, M. Gutjahr¹, A. Xu¹, N. Fröhberg², E. Hathorne¹, F. Scholz^{1,3}, M. Frank¹, T. Schoening¹

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany | ²Constructor University Bremen, Bremen, Germany | ³University of Hamburg, Hamburg, Germany

INTRODUCTION

- Neodymium (Nd) isotopic signatures (εNd) have been widely used as a proxy to reconstruct past water mass mixing and ocean circulation
- These signatures are extracted from sedimentary archives
- > Which archives can be reliably used?
- > In which settings are primary signatures likely overprinted?

SETTING

- oxic sediments
- dissolved Mn and Fe in seawater conc. range (low nM) \rightarrow no reductive dissolution of Mn oxides and Fe oxyhydroxides
- TOC 0.3-0.4 wt.%
- $CaCO_3$ ca. 50-80 wt.%
- Pore waters of marine sediments are the key environment in which early diagenetic exchange processes between seawater-derived Nd and terrigenous solid phases take place

WORK AREA and SAMPLING

- Porcupine Abyssal Plain (PAP) and Iberian Abyssal Plain (IAP)
- Surface sediments (ca. 25 cm) sampled with a multiple corer were studied
- Pore water was extracted using centrifugation
- For Nd isotope analyses, 3-6 MUC liners were pooled
- Comparison of seawater (near-bottom CTD and MUC bottom water), pore water, authigenic sedimentary phases and detrital sedimentary phases

RESULTS: BENTHIC FLUX

-11

-10

-9

PAP - CTD (mab)

PAP - pore water

PAP - authigenic

IAP - CTD (mab)

- IAP - pore water

-O-IAP - authigenic

IAP - detrital

PAP - detrital

Seawater, pore water, authigenic and detrital solid phases are more radiogenic at the IAP than PAP

The detrital phase is more unradiogenic at PAP than the authigenic phase \rightarrow impact on pore water?

No clear difference between near-bottom seawater, pore water and authigenic phases

REFERENCES

Federal Ministry of Education

and Research

- Abbott A N, Haley B A, McManus J and Reimers C E, The sedimentary flux of dissolved rare earth elements to the ocean. Geochimica et Cosmochimica Acta 2015, 154, 186–200.
- Gazis, I.-Z., Mohrmann, J., Schoening T., and Wölfl, A.-C. 2021. Multibeam bathymetry processed data (Kongsberg EM 122 working area dataset) of RV MARIA S. MERIAN during cruise MSM96. PANGAEA, https://doi.org/10.1594/PANGAEA.930063.

ACKNOWLEDGEMENTS

PtJ

We thank the DFG for funding cruise MSM96 (cruise proposal GPF 20-3_88, Metal-ML) and the sceintific party and crew of MSM96 for excellent help during sampling.

CONCLUSIONS

- Small but widespread benthic fluxes of REE at PAP and IAP \succ ϵ Nd of the pore water is within error of the near-bottom seawater and also of authigenic and detrital solid phases
- > The small benthic fluxes suggest little Nd input into bottom seawater, making alteration of seawater prior to archiving in the sedimentary record unlikely

Begutachtungspanel Forschungsschiffe RESEARCH FOR GRAND CHALLENGES

25

