
RESULTS: BENTHIC FLUX
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RESULTS: Nd ISOTOPIC SIGNATURES

▪ PAP: -0.9 pmol cm¬2 yr-1

Nd in the PAP (n=10 

cores)

▪ IAP: -0.6 pmol cm-2 yr-1

Nd (n=9 cores)

➢ Considerably lower 

compared to ocean 

margin sites: e.g.,

-13 pmol cm-2 yr-1

(Abbott et al., 2015)

Rare earth element cycling in oxic pore waters from 

the Northeast Atlantic (MSM96): benthic fluxes and 

implications for the use of Nd isotopes as a 

past water mass proxy

S. Paul1, M. Gutjahr1, A. Xu1, N. Fröhberg2, E. Hathorne1, F. Scholz1,3, M. Frank1, T. Schoening1

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany | 2Constructor University Bremen, Bremen, Germany | 3University of Hamburg, Hamburg, Germany

INTRODUCTION

▪ Neodymium (Nd) isotopic signatures (εNd) have been widely used as a 

proxy to reconstruct past water mass mixing and ocean circulation

▪ These signatures are extracted from sedimentary archives

➢ Which archives can be reliably used?

➢ In which settings are primary signatures likely overprinted?

▪ Pore waters of marine sediments are the key environment in which early 

diagenetic exchange processes between seawater-derived Nd and 

terrigenous solid  phases take place

SETTING

• oxic sediments

• dissolved Mn and Fe in seawater conc. range (low nM) → no reductive

dissolution of Mn oxides and Fe oxyhydroxides

• TOC 0.3-0.4 wt.%

• CaCO3 ca. 50-80 wt.%

WORK AREA and SAMPLING

• Porcupine Abyssal Plain (PAP) and Iberian Abyssal Plain (IAP)

• Surface sediments (ca. 25 cm) sampled with a multiple corer were

studied

• Pore water was extracted using centrifugation

• For Nd isotope analyses, 3-6 MUC liners were pooled

• Comparison of seawater

(near-bottom CTD and MUC 

bottom water), pore water, 

authigenic sedimentary phases

and detrital sedimentary phases

Bathymetry data: Gazis et al., 2021
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CONCLUSIONS

➢ Small but widespread benthic fluxes of REE at PAP and IAP

➢ εNd of the pore water is within error of the near-bottom seawater and 

also of authigenic and detrital solid phases

➢ The small benthic fluxes suggest little Nd input into bottom seawater, 

making alteration of seawater prior to archiving in the sedimentary record 

unlikely

Also Mn increase

at this depth!

▪ Seawater, pore water, 

authigenic and detrital

solid phases are more

radiogenic at the IAP 

than PAP

▪ The detrital phase is

more unradiogenic at

PAP than the authigenic

phase → impact on 

pore water?

▪ No clear difference

between near-bottom

seawater, pore water

and authigenic phases

Benthic
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