

Do hydrothermal systems at the Mid-Atlantic Ridge affect UNIVERSITY the distribution of dissolved rubidium, uranium und vanadium?

Sandra Poehle¹, Lukas Klose¹, Andrea Koschinsky¹ ¹ Constructor University Bremen, Marine Geochemistry

Introduction

- Rainbow plume known to be enriched in transition metals (e.g. Fe, Mn, and Cu; Findlay et al., 2015)
- Rb (rubidium): representative for conservative mixing in marine water column, data from hydrothermally active sites not published

Sampling area and sample pretreatment

Ti rosette frame, equipped with sensors for e.g. turbidity, oxygen

C>ONSTRUCTOR

- U (uranium): enrichment observed in some sediments at MAR associated with microbial mediation (Mills et al., 1994)
- V (vanadium): in suspended particulate matter in plume enriched compared to above-plume waters (Haalboom et al., 2020)
 V enrichment in sediments under Rainbow plume (Cave et al., 2002)

→ Which affect does the Rainbow hydrothermal plume have on Rb, U, and V

– is it a sink or a source?

- Rainbow vent site (M176/2, Sept. 2021)
- Tracing plume dispersion with tow-yo CTD, perpendicular to expected plume direction

Analysis

 Quadrupole ICP-MS (NEXion 350x, Perkin Elmer in standard and KED (kinetic energy discrimination) mode; later one to suppress polyatomic matrix interferences

Results and discussion

Stn 5 (36.229°N,33.903°W) → Rainbow vent site was expected here, though low turbidity recorded (note logarithmic x-axis)

o Stn 7 (36.231°N, 33.903°W) → slightly north-west of stn.5, high turbidity signal (1950–2250m), close to vent site, oxic water column o Stn 9 (36.276°N, 33.895°W) → further north, plume still traceable through turbiditiv though shifted closer to seafloor (2050–2250 m)

| diss. oxygen [µmol/kg] |
|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 | 230 235 240 245 250 |
| | | | | | | | | |
| log ₁₀ turbidity [FTU] |
-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5	-2 -1.5 -1 -0.5 0 0.5
			11.5 1/1 3			a a mar N/ France 1/1/ml	a a mar N/ Fransa I/I (m1	

Rb:

- All stns.: distribution with depth within uncertainty of method
- 0.2 µm aliquots from cl and SQF are similar, no fractionation into different size fractions
- → Rb shows conservative distribution

U:

All stns.:

- Distribution with depth within uncertainty of method conservative conc. profiles
- \geq 0.2 µm aliqots cl and SQF are similar
- No significant difference in size fractions
- → All U truly dissolved
- U does not deviate from conservative
 profiles since euxinic conditions are
 missing (low overage conditions)

V:

Stns. 5 and 7:

- Decrease in conc. in plume depth range
- No difference in size fractions (SQF)
- → All V truly dissolved

Stn. 9:

- Conservative distribution with depth
- → Influence at stns. 5 and 7 could be a signal of a different vent site since no

Conclusion

- Rainbow plume does not affect Rb, concentration is similar to typical seawater concentration → can be used as conservative reference element
- In the non-buoyant oxic plume, U behaves conservatively as well
- Scavenging on plume particles can result in loss of V from the water column potential scavenging on Fe oxide colloids?

Outlook	References
 Analysis of filters collected during SQF 	Cave, R.R., German, C.R., Thomson, J., Nesbitt, R.W. (2002). Fluxes to sediemnts underlying the Rainbow hydrothermal plume at 36°14'N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta. 66(11), 1905-1923.
 Digestion and analysis of sediments 	Findlay,, A.J., Gartman, A., Shaw, T.J., Luther III, G.W. (2015). Trace metal concentration and partitioning in the ifrst 1.5m of hydrothermal vent plumes along the Mid- Atlantic Ridge: TAG, Snakepit, and Rainbow. Chem. Geol. 412, 117-131.
 Comparison with nutrients and particulate data on U (provided by 	Mills, R.A., Thomson, J., Elderfield, H., Hinton, R.W., Hyslop, E. (1994) Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth and Planetary Science Letters 124, 35-47.
GEOMAR)	Haalboom, S., Price, D.M., Mienis, F., van Bleijswijk, J.D.L., deStigter, H.C., Witte, H.J., Reichart, GJ., Duineveld, G.C.A. (2020). Pattern of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge. Biogeosciences, 17, 2499-2519.